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A MODEL FOR HYDROSTATIC CONSOLIDATION OF PIERRE SHALE
By
William Z. Savage
INTRODUCTION

Braddock and Machette (1976) have done hydrostatic consolidation tests on
Pierre Shale. What follows is an attempt at modeling their experimental
results using a special case of Biot's (1941) theory of three-dimensional
consolidation. The objective is to provide a theoretical basis for predicting
the variation with time of pore pressure, volume of expelled pore fluid, and
axial strains, resulting from hydrostatic consolidation of Pierre Shale.

BIOT'S THEORY OF THREE-DIMENSIONAL CONSOLIDATION

Biot (1941) considered the stress-strain response of a porous material
having the following properties: (1) isotropy, (2) reversibility of stress-
strain relations under final equilibrium conditions, (3) linearity of stress-
strain relations, (4) an incompressible pore fluid, (5) small strains, and (6)
water flow through the porous skeleton according to Darcy's Law. A brief
review of Biot's isotropic theory will be given and applied to the particular
case of hydrostatic consolidation. Biot's theory will then be applied to
Braddock and Machette's (1976) experimental results.

The first of Biot's constitutive (stress-strain) relations are in
standard tensor notation:

=1 A P
e.. ——(O-o -—Gijokk)+—5i. (1)

Wy Y a2y 3
where ejj represents strains, 9ij represents stresses, §.. is the Kronecker
delta, u and A are respectively the shear modulus and Lame's constant for the
elastic skeleton, P, is the pore pressure, and the coefficient 1/H is a
measure of compressibility of the porous material for a given change in water
pressure. As can be seen, equations 1 reduce to the usual elastic relations
when the pore pressure, P, vanishes.

Because consolidation involves removal of pore water, an additional
variable specifying the change in the amount of pore fluid per unit volume of
porous medium must be defined. For a saturated material containing an
incompressible fluid, this variable, o, is equal to n - Ng> where n and n
are porosities in the strained and unstrained states. Biot assumed the



relation between change in water content (porosity), pore pressure, and mean

%43
stress (—) to be
3H

6 = P/R + it (2)
3H
where the coefficient 1/R measures the change in water content (porosity) for
a given change in water pressure. This second constitutive relation (equation
2) predicts that an increase in pore-water pressure causes an increase in
porosity, and an increase in compression causes a decrease in porosity in a
water-saturated body.

The constitutive equations (1) and (2) may be inverted for stress in
terms of strain to give

where a = §L_i_§g = E-where K is the bulk modulus and
3H H
6 = aeii + P/Q (4)

where 1/Q = 1/R - o/H.

The stresses given by equation (3) must satisfy equilibrium, or

90 «

1J _
3 *pFy =0 (5)

where F; represents the components of body force per unit mass at the point
xj. Substitution of equation (3) into (5) and use of the strain displacement

du. au .
relation €4 = 172 1+ _J 7 1eads to the equations of equilibrium in

axj Bxi

terms of displacements

au. au .
(A + p) _EL_(__JJ+ u 9 (__!_ - a EEL_+ ij =0 (6).
axj E)X,i axi axi axj
We see that the pressure gradients EB—-affect the displacements 1ike a body
force. X

An additional relation is needed to describe the flow of pore fluid in
response to changes in pore pressure. According to Darcy's Law, the rate of
flow of fluid, V;, at a point, defined by the volume of fluid crossing a unit



area per unit time, is proportional to the gradient of pore pressure at that
point, or

v, = -k (7)
axi
where k is a constant called the permeability.

Assuming the pore fluid to be incompressible, continuity requires the
increase of fluid content per unit time in a volume of porous solid, or

5 39 4y , to equal the volume of fluid entering per unit time through the
ot

surface of the volume, or 'évinids, where n; is an outward normal to s. We

have, then,

I3 4y = Tvingds
ot
which, by the divergence theorem of Gauss, is
oV,
5 3 av = '6 —Ldv
ot ax

or, finally, the statement of continuity:

oV

B, _T-0 (8).
at  ax,;
i
substituting equations (4) and (7) in (8) leads to,
2 9€
k2P o Kk 2R (9).
BXiBXi at ot

The four equations (6) and (9) in the four unknowns u; and P constitute
the basic equations in Biot's (1941) theory of consolidation.

HYDROSTATIC CONSOLIDATION OF ISOTROPIC POROUS SOLID

Consider the cylindrical specimen of porous rock shown in figure 1. The
specimen is jacketed so that fluid flow is parallel to the X, axis. Under
hydrostatic conditions o,; = 0,5, = 033 = -0 and because the porous rock is
assumed to be isotropic e;; = ey, = e33 or ek = 3e11 and from equations (3),

e = Je1 = % ; g (10).

Because fluid flow occurs only in the x
of continuity, reduces to,

, direction equation (9), the statement



Figure 1.--Cylindrical specimen of length h. Boundary conditions on pore
pressure are as shown.



2 =
k3P =23 40 _6]+1/038 (11),
32 Kot at

where we have used equation (10) for ek Also, because the confining
pressure, g, is independent of time equation (11) reduces to,

2
K 2P o, 18P (12).
aXlz K Q at

In equations (9) and (12), the coefficient 1/Q is a measure of the amount
of water than can be forced into a porous material when the volume of material
is kept constant. For most rocks the compressibility of the mineral
constituents is small; thus 1/Q = 0. Further, because of this small
compressibility and because of the small compressibility of water, changes in
water content and volumetric strains are approximately equal. Such a
condition is satisfied when a=1 and 1/Q=0 in equation (4). Then, since
1/Q = 1/R - o/H and o = K/H, we have for rocks with a=1 and 1/Q=0, R=H=K where
K is the bulk modulus of the porous matrix and in particular equation (12)
becomes,

2
¥P 1% (13)
C

where C, the coefficient of consolidation for this case, equals kK.

In Braddock and Machette's (1976) experimental apparatus, a number of
different drainage configurations are used. In the present model, we will
assume that the end of the specimen x3=h (fig. 1) is drained so that here
P=0. Also, no flow occurs at the end x1=0 (where the pore pressure is

measured) and thus by Darcy's Law (equation 7) P <9 at x; = 0. This is

Ix

equivalent to their drainage configuration la (Braddock and Machette, 1976,
p. 24).

Thus, the distribution of pore pressure during hydrostatic consolidation
is given by a diffusion-type equation for pore pressure (equation 13) subject
to the initial condition,

P=-¢ t=0,0<x <h,
and boundary conditions,
P=0 xy =h, t>0

oP  _ =



The solution to equation (13) subject to these conditions is found in
Carslaw and Jaeger (1959, p. 97) and is,

© o N 2 .2 2 (2n+1) TX]
_de o (-D)" -C(2n+1)2 w2t/8R2
m n=0 (2n+1) 2h
® n (2n+1)h-x; (2n+1)h+x,
=gl -z (-1)" {erfCc —— + erfc ———}] (14),
n=0 2(Ct)l/2 2(Ct)1/2

where erfc is the complementary error function. The second form of the
solution (14) is most suitable for small times.

The pore pressure measured at x1=0 is,

4 = (-1)" o ~C(2n+1)2 x2t/4n2

P==z
m n=0 (2n+1)
—o [ 1-2 3 (-1)"erfc 2mh (15).
n=0 2(ct)t/2
Defining the dimensionless variable 1t = IEE-we write the dimensionless
4nh?

expressions for the pore pressure at X1=0’

Plo=1-2 5 (-1)" erfc (2n+1) n/4<1/2
n=0

-4
o

o n
g 21 o-(2nHl)2e (16).
n=0 (2n+1)

The first form of equation (16) converges rapidly for small t and the second
form converges rapidly for large t. The variation of P/o with t is shown in
figure 2. From equations (16) and figure 2 we see that P = g when 1 = 0

and P/o+0 as 1.
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The axial strain field is given by substituting equation 14 in equation
(10) or,

€1 = P o
3K
o n_ -C(2n+1)2%2t/4h2 (2n+1)x,

=94 5 (-1) e cos ————— -1 ]

3K w n=0 (2n+1) 2h

o n (2n+1)h-x; (2n+1)h+x,
=29 5 (-1)"[ erfc ———— + erf¢c ————— ] (17).

3K n=0 2(ct)1/2 2(Ct)1/2

The axial displacement field is obtained by integrating equations (17) with
respect to x,. At x,=h the axial displacement is u =h-h,, where hy is the
original length of the specimen. The total axial strain measured in the

h-h

consolidation experiment is then given by €4 = 0 (change in length of the
h
specimen over the original length) or, 0
h-h o
c, = 0.0 g 8 5 1 e -C(2n+1)242t/4h2 17
ho 3K w2 n=0 (2n+1)2
1/2 et
=20 (EHYPrp a2 42 5 (1) derfc —M ] (19),
3K h? n=0 (Ct)1/2

where ierfc represents the integral of the complementary error function
(Carslaw and Jaeger, 1959, p. 483).

2
Again, with ¢t = X gt, we have the dimensionless expressions for the
4h
total axial strain,
3K€ ®© 2
a_8 1 o -(@n)2r
g 72 n=0 (2n+1)2
A 2] a1z +2 0 (1) derfe —M ] (20),
n n=0 27l /2

3Ke
where the second form is most suitable for small t. The variation of a is

shown in figure 3 (left-hand side). Note from equations (20) and figurg 3
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that e = 0 for t = 0 and ¢, = 29 as t+w. Thus for large times, when the
3K
pore pressure (fig. 2) vanishes, the specimen reaches a final total axial

elastic compressive strain given by €y~ -a/3K.

Braddock and Machette (1976) measured the volume of water expelled from
samples during consolidation. This was done at the end x1=h (fig. 1) in their
experimental drainage configuration la. The volume of fluid crossing unit
area per unit time, V, during consolidation is given by Darcy's Law (equation

7) where P s given by the gradient with respect to x, of equation (14). At
3X1
x1=h then,
- ® _ 2.2 2
y = “2ka T -C (2n+1)2n2t/4h
h n=0
- bt -n2h2
ko [ 142 5 (-1)e "MPH/CYy (21).
(nCt)1/2 n=1

The total volume of fluid, Vy, crossing the end x3=h of the sample up to a
time t (the volume measured by Braddock and Machette) is then given by
integration of equations (21) or,

t
Vi = mr2 £V dt
0
® - 2,2 2

Larthg 8 = o020+ LRt/

K w2 n=0 (2n+1)2

172 _ 1,2 @

Sar?h Ot g 2 12 T D Gepfe M (22).

K h2 n=0 (ct)l/2

Equations (22) are written in dimensionless form as

KV @ 2
nr2hg 12 n=0
1/2 ®
- 4/ [a-12+2 ¢ (-1)" derfc "] (23).
m n=0 2t1/2

We see that equations (23) are identical in form but opposite in sign to
equations (20) for the dimensionless total axial strains. This is a
consequence of the assumption that changes in water content and volumetric

10



KV
with t 1is shown on

strains are approximately equal. The variation of
mrZzhg
the right-hand side of figure 3. We see that the amount of fluid expelled is
zero at t=0 and approaches a fixed value at large t. This fixed value is
equal to the negative of the total change in fluid content of the sample as
can be seen from the definition of change in fluid content 8, the change in
volume of fluid per unit volume, and equations (2) and (10). As the pore
pressure goes to zero in equations (2) and (10) the final change in fluid
content and porosity in a saturated sample is then 8 = n - n_ = -o/K where K
is the bu1k2modu1us of the porous matrix. The total change in fluid content
is then -mr h o/K which is the negative of the total volume of fluid expelled
at x1=h. Hence, the volume of fluid that can be removed depends on the
compressibility of the porous matrix, 1/K, and the confining pressure o.
Increasing o or decreasing K leads to an increase in the volume of fluid
removed and a further decrease in porosity.

HYDROSTATIC CONSOLIDATION OF A TRANSVERSELY ISOTROPIC SOLID

Up to this point in the theoretical development for hydrostatic
consolidation the porous solid has been assemed to be isotropic. However,
Pierre Shale, 1ike most sedimentary rocks, is transversely isotropic. Such a
material has one set of properties in the plane of the bedding and a different
set of properties normal to the plane of the bedding. To be consistent with
the experimental procedures of Braddock and Machette (1976) we will take
planes parallel to the x;x, plane on figure 1 as the plane of the bedding and
directions parallel to the Xq axis as normal to the bedding. For this case,

where Xq is the axis of elastic symmetry, equations 1 are written,
911 V1022 V2033
ell S — = — - — + P/3H1
Ey Ey Ey
V1 O22 V2
€y = — 11 t — - — o33 + P/3H,
Ey Ey )
“V2 V2 033
€33 = —— 0)) - — oy + — + P/3H,
E, E, E,
2(1 +\)1)
ey = [———] o)y
Ey
1
€13 = — o013
u2
_1
€3 = — 0933 (24),
u2

11



where E  is Young's modulus and v; is Poisson's ratio in the plane of the
bedding, E2 is Young's modulus, v, is Poisson's ratio, and up is the shear
modulus normal to the bedding plane. The coefficient 1/H, is a measure of the
compressibility of the porous material in the bedding plane for a given change
in pore water pressure and 1/H, has a similar meaning for porous material
normal to the plane of the bedding.l

The relation between water content, pore pressure and stress given by
equation (2) for an isotropic porous solid becomes in this case,

011 + 022 033
o = + + P/R (25),
34, 3H,
where 1/R measures the change in water content for a given change in pore
water pressure.

Consider a hydrostatic jacketed test in which the pore pressure is equal

to the negative of the hydrostatic pressure; o), = 0y, = 033 = -0, P = o.
For a saturated porous solid & = n - No* If the pore fluid and the mineral
constituents are assumed to be incompressible there will be no change in
porosity or 8 = 0 in this test and from equation (25) we find,
2H, + H,
1/R =
3H, H,
and in general,
011 * 022 033
o = MRS S (26).
3H, 3H, 3H, 3H,

If the pore fluid is now allowed to drain out under hydrostatic stress
the change in volume, ey, will be approximately equal to the volume of water
squeezed out, 6. After a sufficient time the pore pressure will vanish and
from equations (25) and (26),

1 \)l Vo
ek = €11 texpptegy = [ —-—-— 1 (011 + 022)
B, By Ep
1 - 2v, o1 t 02 033
+[————]033=9= + ’
E, 3H, 3H,

and we see that,

1To interpret 1/H, and 1/H, consider a jacketed sample under no external
loads; o)) = 025 = 033 = 012 = gp3 = 033 = 0. A tube is attached to the
jacketed sample and water under a known pressure is pumped in. The resulting
strains are measured and 1/H, and 1/H, are found from equations (24) or,

€)1 €22 €33
1/3H, = — = —= and 1/3H, = — .
P P P

12



1-2V2

3H, E,

Then, for the special case of a saturated porous solid with
incompressible mineral constituents and an incompressible pore fluid,
equations (25) and (26) become,

g11 2 Vo 1 -v vy
€] = ——=-—03 - —o33 *+ [ -—1°p

Ex E, E, £y E;

-v) 022 V2 1-v; v
€2 = —— o)) +— - —o33 + [ -—1P

'V2 Vz 033 1 - 2V2
€33 = — 01] -~ — oz t + [ 1P

Es Es Ea E,

2(1 + Vl)
E,
_1

€3 = — 0313

H2

1
€23 = — 023

i

1-V1 Vz 1 - 2V2
g = [ - —-— ] (011 + 022) + [ —— ] 033

E, E,
2(1 - Vl) (1 - 4v2)

+ [ + 1P (27).

E, E,

Darcy's Law governing the flow of fluids in porous solids becomes for the
case of transverse isotropy,

Vl = —kl EE
aXl

V2 = —kl EE_
8X2

V3 = -kz QE—- (28).
X3

13



where k1 is the permeability in the plane of the bedding and k2 is the
permeability in directions normal to the plane of the bedding.

The equation of continuity (equation 8) for the case of transverse
isotropy is,

2 2 2
38 _ ky [ 3P, 24P 1+ kza P (29).
at Ixp?2  3xp2 ax;2

Substituting equation (27) for & in equation (29) we arrive at,
1-v; vy

2 2 2
kl[aP +3P ]+k28P =[ ___]2_{(011"‘022)
ax12 3X22 3X32 El E 2
1-2v, 3033 2(1-v;) (1-4vy)
+ [ ] + [ + ]a_P. (30).

E, at E) E, at

Since the cylindrical sample is jacketed so that fluid flow occurs only
in the x  direction, and the confining pressure (oy; = 02, = 033 = -0) is
independent of time, equation (30) reduces to the form of equation (13) except
that the coefficient of consolidation, C, is replaced by C1’ which is defined
by,

e, 1 2(1-vy) . (1-4v,) ] - 1- ;31).

Again we have the initial and boundary conditions,

P=-g t=0,0<x; <h

P=0 t>0,x, =h
gl: t}O, X].:O’
3X1

and pore pressures are given by equations (14) and (15) with C replaced by
Cl. The pore pressure at x1=0 for the transversely isotropic case is the, in
dimensionless form,

P/o = 1-2 1t (-1)"erfc (2n + 1) n/471/2
n=0

4 57 (D" (20 + 1)2e
m n=0 (2n + 1)

™

(32).

14



n2Ct

Equations (32) are identical to equations (16), except that t = "
4h

Hence, figure 2 can be used to obtain the pore pressure in the transversely
isotropic case.

The strains resulting from hydrostatic consolidation are obtained from
equations (27) and can be written,

€y = _1_.[ P -0

€11 = X
1
€33 < —l— [P-0] (33),
3K,
1 1 - ] v2 1 - 2v2
where 1/3K,; = = -—and 1/, = ———— . Following the same
3H, E, E, E,

arguments that led to equations (19) for the total axial strain we arrive at
the dimensionless form,

o - 2
3K1€a - §_ c 1 e (2" + 1) T -1
o m2 n=0 (2n + 1)2
A r 21012 42 10 (1) derfc M ] (34).
" n=0 21 1/2

Equation 34 is of the same form as equation (20) except that K is replaced by
w2C,t

K1 and T =
4h2

isotropic case can he obtained by using figure 3.

and hence the time variation of €, in the transversely

Arguments similar to those given in the isotropic case lead directly to
the dimensionless expression for the total volume of fluid expelled at X, = h,

T . 1 - 8 " e—(2n + 1)2¢
mrehg 2 n=0
172 had
S22 L2 w2 3 ()" derfe —MM ] (35),
m n=0 2tl/2
- nzClt

where K is given by equation (31) and t = Again this is seen to be

4h?
of the same form as the expression (equation 23) for the isotropic case and

15



thus the total volume of expelled fluid in the transversely isotropic case can
be obtained from figure 3.

In summary, the time variations of pore pressures at x1=0, total axial
strains, and total expelled fluid volumes for hydrostatic consolidation of a
transversely isotropic porous solid can all be obtained from figures 2 and 3
provided appropriate bulk moduli (K1 and K) and an appropriate coefficient of
consolidation, Cl, can be found. We will now consider how these constants can
be found from a particular hydrostatic consolidation test.

APPLICATION TO A PARTICULAR HYDROSTATIC CONSOLIDATION TEST

Figures 4, 5, and 6 show respectively the variation with time of the pore
pressure, the axial strain and the total expelled fluid volume for Braddock
and Machette's (1976, fig. 13, p. 36) hydrostatic-consolidation test 152. The
test was carried out under a confining pressure of 400 bars (40 MPa) with the
bedding parallel to the X)X, plane on figure 1, and with a drainage and pore
pressure measuring configuration consistent with that shown on figure 1.

Following the usual procedures for matching theoretical and experimental
curves the data in figures 4, 5, and 6 was plotted on translucent
semilogarithmic paper on comparable scales to figures 2 and 3 and horizontally
shifted until "best fit" was obtained. The resulting ratio of © to t yields
the consolidation coefficient,

2
Cl = ih—-— T/t,

n2
where h is the original sample length (5 cm). Comparing the experimental
points of figures 4, 5, and 6 with the theoretical curves of figures 2 and 3

we find that in all cases the experimental and theoretical points are within
15 percent of each other when C; = 2.81 X 10-6 cm?/sec.

To find the constant K1 we match points between the dimensionless
theoretical curve (fig. 3) for €. and the "best fit" curve of figure 5. For
example, at 700 hours (fig. 5) €, = -0.0101 and the comparable point on

3K1€

figure 3 at T = 0.7 1s given by = 0.6. Substituting the known values

o = -400 X 106 9159-(-40 MPa) and e, = 0.0101 and solving for K yields
cm

K, = 7.92 X 103 YY" (0,792 gPa).
cm?

16
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In the same manner the constant K can be found by comparing the
dimensionless theoretical curve for Vi (fig. 3) and the "best fit" curve of

figure 6. We find that K = 2.84 X 109d¥3§— (0.284 GPa).
c

Having determined C1 and K we can next determine the permeability in the
axial direction, k,, from the relation C; = kK (equation 31). Solving for k)
we find it to be 9.86 X 10-16cm3/sec/dyne/cm which is 9.99 X 10-10 darcys
or 9.60 X 10-13cm/sec. This permeability is similar to but somewhat larger
than the value (5.6 X 10-l%cm/sec) obtained by Braddock and Machette (1976) in
test 152.

- 3(1 - vy)
Also, as K and K1 are known, K = ———————— can be found from equation
(31), that is, from, E»
_ 2(1 - Vl) (1 - 4V2)
1/K = [ +
Ey Ez
2(1 - vy) 2vy 1 - 2y,
=L - + 1
Ey ) E2

1302+l 1.
Ky Kz

Solving for K2 we see that K, =1.24 X 10 2—rgnz—'ﬂg-(o.lzll GPa). Hence, at the
c
end of consolidation when P = 0, e33, the strain perpendicular to bedding, is

predicted from the last of equations (33) to be -0.107. This is roughly 6.4
times greater than the final axial strain predicted by equation (34) and shown
on figure 4. Braddock and Machette (1976) found the strain perpendicular to
bedding to be 1.1 to 2.6 times as large as strains parallel to bedding in
hydrostatic consolidation at 600-bars confining pressure, so the predicted
value may be somewhat large.

CONCLUSIONS

Although the theory presented is only a first attempt at modeling
laboratory hydrostatic consolidation of Pierre Shale, it appears that it can
be used to estimate the time variation of pore pressure, volume of expelled
water, and axial strains and especially the long-time behavior of these
quantities. Also, because the theory has been applied with moderate success
to only one hydrostatic consolidation test, comparisons with other test data
should be made which, no doubt, will force further theoretical refinements.
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